Al-Farabi Kazakh National University Faculty of Physics and Technology Department of Theoretical and Nuclear Physics

APPROVED BY
Dear of Facult

Dear of Facult

Davletov A.E.

204

2017

EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE

IGTF 3304 « Selected chapters of the theoretical physics »

Specialty "5B060400 –Physics" Educational program IET I "Theoretical physics"

 $\begin{array}{c} Course-3\\ Semester-6\\ Number of credits-3 \end{array}$

Almaty 2017

Educational-methodical complex of the discipline is made by <u>Takibayev N.Zh.</u>, <u>d.s.p.-m.</u>, <u>academic of NAS RK</u>, <u>professor lecturer</u> (name, surname, scientific degree, academic rank)

Based on the working curriculum on the specialty "5B060400 - Physics"

Considered and recommended at the meeting Nuclear Physics	of the department Theoretical and
from «_20 »06 2017 year, protoco	ol № 42
Head of department (Signature)	Abishev M.Y.

Recommended by methodical bureau of the faculty $_{26} = 06$ 2017 year, protocol 10 10

Chairman of the method bureau of the faculty Gabdullina A.T. (Signature)

Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Spring semester, 2017-2018academicyear

Academic course information

Discipline's	Discipline's	Type	No. of hours per week			Number of ECTS		
code	title		Lect.	Pract.	Lab.	credits		
IGTF 3304	Selected chapters of theoretical physics	Elective	2	1	0	3	5	
Lecturer	TakibayevN.Zl of NAS RK, pr		, acaden	nic Off	Office hours So		neduled	
e-mail	E-mail: takibay	ev@gmail.c	com					
Telephone number	Telephone: 2	?925-133;	8-777-70	04- Au	ditory	3	19	

Academic	Typeofcourse (theoretical, practical; basic, elective) and its purpose (role and
presentation of	place of the course in the educational program): Theoretical Nuclear Physics.
the course	The aim of the course: to give the students the deep understanding of
	themodern physics of nucleus of atoms and quantum mechanics of many-particle
	systems and self study, to form a system of competences in the context of
	qualification requirements:*
	A) be able to -demonstrate acquired knowledge (specifically) and it's
	understanding; - demonstrate an understanding of the over all structure of the
	study field and the relations between its elements (specifically);
	B) be able to – include new knowledge in the context of basic knowledge,
	interpret its contents; - analyze educational situation and offer direction to solve
	it; - use methods (research, calculation, analysis, etc.) inherent to the field of
	study (specifically) individually or in a group teaching and research
	activities;
	C) be able to - synthesize, interpret and evaluate the learning out comes of
	discipline, modules, midterm exam content (specifically);
	D) be able to – constructive educational and social interaction and cooperation in
	the group: propose to consider a problem to recognite impact on in
	the group; - propose to consider a problem, to reason its importance; - accept criticism and to criticize; - work in a team;
	E) be able to – recognize the role of taken course in the implementation of
	individual learning paths. *The system of descriptor verbs must be used during
	the formation of competences (Look in Application 2) **Active and interactive
	methods is recommended to ensure deeper understanding and learning of
	educational material and to achieve learning out comes of the course
	(individual researches, group projects, case studies and there methods).
Prerequisites	Mathematical analysis, the theory of functions of complex variables,
	differential equations, mathematical physics, statistical physics, physics of
	elementaryparticles.
Post requisites	The theory of gauge fields and electroweak interactions, chromodynamics.
	quantum gravity.

Information resources	Literature (with an indication of the authors and data output), the availability(number), software and consumables with information about where
	you can get them. (8-9) Recommended: 1. Masud Chaichian, Hugo Prez Rojas, Anca Tureanu, Basic Concepts in Physics, Springer Heidelberg New York Dordrecht London, 2014, ISBN 272-2-642-10507-62
	 978-3-642-19597-6 2. G.H.Wannier, Statistical Physics, Dover, New York, 1987. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. Pergamon, London, 1981.
	4. R.P. Feynman, <i>The Feynman Lectures on Physics</i> , Addison Wesley, Massachusetts, 1969.
	 M. Chaichian, I. Merches, A. Tureanu, <i>Electrodynamics</i>, Springer, Berlin Heidelberg, 2014. F. Mandl, G. Shaw, <i>Quantum Field Theory</i>, Wiley, London, 2010. L.D. Landau, E.M. Lifshitz, <i>Quantum mechanics</i>, 3rd edn. Pergamon, London, 1989, p. 768. L. B. Okun: <i>Leptons and quarks</i>, translated from Russian by V. I. Kisin, North-Holland, 1982.
	 Additional: R.K. Pathria, Statistical Mechanics, 2nd edn., Elsevier, Oxford, 2006. C. Kittel, Solid State Physics, 8th edn., Wiley, New York, 2005. F. Halzen, A. Martin, Quarks and leptons: An Introductory Course in Modern Particle Physics. USA, 1984. M. Chaichian, A. Demichev, Path Integrals in Physics. Vol. 1: Stochastic processes and quantum mechanics, IOP, Bristol, UK, 2001. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2010. I.D. Lawrie, A Unified Grand Tour of Theoretical Physics, IOP, Bristol, 2002.
Academic policy of the course in the context of university moral and	Academic Behavior Rules: Compulsory attendance in the classroom, the impermissibility of late attendance. Without advance notice of absence and undue tardiness to the teacher is estimated at 0 points. Academic values: Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU Student's honor)
Evaluation and attestation policy	Criteria-based evaluation: Assessment of learning outcomes in correlation withdescriptors (verification of competence formation during midterm control andexaminations). Summative evaluation:
10 m g (6)	evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students. The formula for calculating the final grade.
	Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$
	Below are the minimum estimates in percentage terms: 5% - 100%: A 90% - 94%: A- 85% - 89%: B+ 80% - 84%: B 75% - 79%: B-
	85% - 89%: B+ 80% - 84%: B 75% - 79%: B- 70% - 74%: C+ 65% - 69%: C 60% - 64%: C- 55% - 59%: D+ 50% - 54%: D- 0% -49%: F

Calendar (schedule) the implementation of the course content:

Wee	restates, practical classes, independent work of	Number	Maximum
ks	students)	of hours	score
	Module 1		
1	Lecture-1 (L-1). Laws of Thermodynamics, Thermodynamic Potentials.	2	-
	Seminar -1 (S-1). Operators and inverse operators, the uncertainty principle and the principle of superposition, matrices.	1	5
2	I2. Schrödinger equation, flux density, linear oscillator, potential box, the transmission coefficient.	2	-
	S-2. Energy and momentum, transformation matrices, matrix density.	1	5
3	L-3 Angular momentum, eigen values and eigen functions, parity states.	2	<u> </u>
,	S-3. Motion in a centrally symmetric field. Spherical coordinates,	1	5
	SSWT 1.Prepare the report: Motion in a centrally symmetric field.	1	20
4	L-4. Electrostatic and Gravitational Fields. Conductors,	2	-
	S-4. Gauss's Law for Electric Fields. Gauss's Law for Magnetism.	1	5
	Module 2		
5	L-5. Maxwell's Equations, Lorentz Force.	2	
5	S-5. Fields in a Medium.	1	5
	SSWT 2 Prepare the report: Fields in a Medium.	1	20
6	L6. Magnetic Properties. Diamagnetism, Paramagnetism	2	-
	S6. Phase Transitions, Spontaneous Symmetry Breaking.	1	5
7	L7. Black Body Radiation. Dispersion of Light.	2	
	S -7 Reflection and Refraction.	1	5
	SSWT 3. Prepare the report: Reflection and Refraction.	1	25
	1stIntermediate Control (IC1)		100
8	Midterm (MT)		100
8	L-8. Wave Function. Operators and States in Quantum Mechanics.	2	-
	S-8. Harmonic Oscillator. Ladder Operators.	1	5
	Module 3		
9	L-9. Emission and Absorption of Radiation. Tunnel.	2	-
y	S-9. Exchange Interaction. Exchange Energy and Ferromagnetism.	1	5
	SSWT 4. Prepare the report: Paradoxes in Quantum Mechanics. Schrodinger Cat. EPR Einstein, Podolsky, Rosen Paradox.	1	10
10	L-10. Quantized Fields and Particles. Dirac Equation.	2	•
	S-10. Natural Units and the Metric Used in Particle Physics.	1	5
	L-11. Quantum Electrodynamics. Unitarity. Feynman	2	•
11	Diagrams	1	
11	Diagrams. S-11. Real and Virtual Particles in Feynman Diagrams	1	5

	formation of electron-positron pairs.		
12	L-12. Quantum Vacuum and Casimir Effect. Principle of	2	-
	Gauge Invariance. CPT Symmetry.		
	S-12. Electron Self-energy. Vacuum Polarization.	1	5
13	L-13. Theory of Weak Interactions, YangMills Fields,	2	-
	Nambu-Goldstone Theorem.		
	S-13. Electroweak Phase Transition. Diagram techniques.	1	5
	SSWT 6. Prepare the report: Quantum numbers. Parity. C, P	1	20
	and T transformations.	882	
14	L-14. Higgs Mechanism, GlashowSalam-Weinberg Model.	2	-
	S-14. Neutrino Oscillations and Masses.	1	5
15	L-15. Hadrons and Quarks, Quantum Chromodynamics.	2	-
	Grand Unification.		
	S-15. Inflation, Supersymmetry, Superstrings.	1	5
	SSW 7. Prepare the report: Inflation, Supersymmetry,	1	25
	Superstrings		
	2 nd Intermediate Control (IC2)		100
	Exam		100
	Total		100

and 15 weeksareincludedintosyllabus (assignmentsubmission)